

Yangtze Optical Fibre and Cable Joint Stock Limited Company

Stock Code: 601869.SH 06869.HK

ADD: No.9 Optics Valley Avenue, Wuhan, Hubei, China(P.C.: 430073)

Tel: 400-006-6869 **Email:** 400@yofc.com

en.yofc.com

Facebook: Yangtze Optical Fibre and Cable Joint Stock Limited Company **LinkedIn:** Yangtze Optical Fibre and Cable Joint Stock Limited Company

© 202101 YOFC All Rights Reserved

WeChat

Yangtze Optical Fibre and Cable Joint Stock Limited Company (also known as 'YOFC') established in Wuhan, Hubei Province in May 1988, is a technologically innovative enterprise specializing in optical fibre preforms, optical fibres, optical fibre cables and integrated solutions, and also a global leading supplier in these areas.

YOFC was listed in the Hong Kong Stock Exchange on December 10, 2014(Stock Code: 06869.HK), and listed on the Shanghai Stock Exchange on July 20, 2018 (Stock Code: 601869.SH), and is the only A&H shares company in China's optical fibre and cable industry as well as the first one in Hubei Province.

YOFC mainly produces and sells different types of optical fibre preforms, optical fibres and optical fibre cables that widely installed in telecommunications industry, customized specialty optical fibres and optical fibre cables, RF coaxial cables and accessories. YOFC also provides the integrated systems, project design and services. In addition, YOFC is equipped with a full series of optical fibres, optical fibre cables and solutions, providing a variety of different products and solutions for world's telecommunications industry and other industries (e.g. Public utility, Transportation, Oil & Chemistry and Medication etc.) and offering its products and services to over 70 countries and regions around the world.

Through introduction, digestion, absorption and re-innovation since its establishment, YOFC has carried out a way to successfully revitalize national industry. YOFC has mastered 3 types of optical fibre preform manufacturing technology (PCVD/OVD/VAD), and honored many awards & reputations such as National Enterprise Technical Center, National First Batch Intelligent Manufacturing Pilot Enterprise, the Second Class National Science and Technology Progress Award(3 times), the China Quality Award, the European Quality Award, etc. In addition, YOFC has obtained over 400 national-granted patents and several foreign invention patents from Europe, US and Japan, and was nominated the support organization for State Key Laboratory in optical fibre and optical fibre cable manufaction technology. It's also one of the significant members in ITU-T and IEC in setting international standards.

Adhering to the mission of 'Smart Link Better Life', YOFC devotes itself to becoming the leader in information transmission and smart links through its core value 'Client Focus Accountability Innovation Stakeholder Benefits', and builds its strategies in the following 5 aspects: Organic growth strategy of the preform, optical fibre and cable business; Strategy for technological innovation and smart manufacturing; Strategy for internationalization and expansion of business scope; Related diversification strategy; Capital operation strategy for synergy in development.

Contents

- OM1(62.5/125μm)
 Multimode Fibre
- $\begin{array}{cc} \textbf{05} & \textbf{OM2(50/125}\mu\textbf{m}) \\ & \textbf{Bend Insensitive Multimode Fibre} \end{array}$
- 07 MaxBand® OM2+/OM3/OM4
 Bend Insensitive Multimode Fibre
- 09 MaxBand® WideBand OM5
 Bend Insensitive Multimode Fibre

OM1(62.5/125μm) Multimode Fibre

Yangtze Optical Fibre and Cable Joint Stock Limited Company

YOFC OM1(62.5/125 μ m) Multimode Fibre complies with or exceeds ISO/IEC 11801-1 OM1 specification, IEC 60793-2-10 A1-OM1 specification, and TIA-492AAAF A1-OM1 specification.

Features	Benefits and Applications
 Superior geometry uniformity Low attenuation High bandwidth at wavelengths of 850nm and 1300nm Manufactured by PCVD process Extremely refined refractive index profile 	 Local area networks (LAN) Video, voice and data services Gigabit Ethernet using laser or LED light sources
Coated with YOFC's proprietary dual layer UV curable acrylate	 High resistance to micro-bending Optimized performance in tight-buffer cable applications Stable performance over a wide range of environmental conditions

Characteristics	Conditions	Specified values	Units
Geometry Characteristics			
Core Diameter		62.5±2.5	[μm]
Core Non-Circularity	≤5.0		[%]
Cladding Diameter		125.0±1.0	[μm]
Cladding Non-Circularity		≤1.0	[%]
Coating Diameter	**	245±7	[μm]
Coating/Cladding Concentricity Error	**	≤10.0	[μm]
Coating Non-Circularity		≪6.0	[%]
Core/Cladding Concentricity Error	**	≤1.5	[μm]
Delivery Length		up to 17.6	[km/reel]
Optical Characteristics			
Au d	850nm	≤2.7	[dB/km]
Attenuation	1300nm	≤0.6	[dB/km]
	850nm	≥200	[MHz·km]
Overfilled Modal Bandwidth ——	1300nm	≥500	[MHz·km]
Numerical Aperture		0.275±0.015	
	850nm	1.496	
Group Refractive Index	1300nm	1.491	
Zero Dispersion Wavelength, λ ₀		1320~1365	[nm]
	1320nm≤λ₀≤1348nm	≤0.11	[ps/(nm²·km)]
Zero Dispersion Slope, S ₀	1348nm≤λ _n ≤1365nm	≤0.001(1458-λ ₀)	[ps/(nm²·km)]
Macrobending Loss			
	850nm	≤0.50	[dB]
100 Turns @ 37.5 mm Radius	1300nm	≤0.50	[dB]
Backscatter Characteristics	1300nm		
Step (Mean of Bidirectional Measurement)		≤0.10	[dB]
Irregularities Over Fibre Length and Point Discontinuity		≤0.10	[dB]
Attenuation Uniformity		≤0.10	[dB/km]
Environmental Characteristics	850nm & 130		
Temperature Cycling	-60°C to 85°C	≤0.10	[dB/km]
Temperature-Humidity Cycling	-10°C to 85°C, 4% to 98% RH	≤0.10	[dB/km]
Water Immersion	23°C, 30 days	≤0.10	[dB/km]
Dry Heat	85°C, 30 days	≤0.10	[dB/km]
Damp Heat	85°C, 85% RH, 30 days	≤0.10	[dB/km]
Mechanical Specification	500 Pacados (500 P	No. of the last of	
		≥9.0	[N]
Proof Test Proof Test		≥1.0	[%]
		≥100	[kpsi]
	typical average force	1.5	[N]
Coating Strip Force	peak force	≥1.3, ≤8.9	[N]
Dynamic Stress Corrosion Susceptibility Parameter (n,, typical)		20	

YOFC OM2(50/125 μ m) Bend Insensitive Multimode Fibre complies with or exceeds ISO/IEC 11801-1 OM2 specification, IEC 60793-2-10 A1-OM2 specification, and TIA-492AAAF A1-OM2 specification.

Features	Benefits and Applications	
Superior geometry uniformity Low attenuation High bandwidth at wavelengths of 850nm and 1300nm Manufactured by PCVD process Extremely refined refractive index profile	Local area networks (LAN) Video, voice and data services Gigabit Ethernet using laser or LED light sources	
Very low macro-bending sensitivity	Supports the use and installation of optical cables with a small bending radius	
Coated with YOFC's proprietary dual layer UV curable acrylate	High resistance to micro-bending Optimized performance in tight-buffer cable applications Stable performance over a wide range of environmental conditions	

Characteristics	Conditions	Conditions Specified values	
Geometry Characteristics			
Core Diameter		50±2.5	[µm]
Core Non-Circularity		≤5.0	
Cladding Diameter		125.0±1.0	[µm]
Cladding Non-Circularity		≤1.0	[%]
Coating Diameter		245±7	[µm]
Coating/Cladding Concentricity Error		≤10.0	[µm]
Coating Non-Circularity		≤6.0	[%]
Core/Cladding Concentricity Error		≤1.5	[μm]
Delivery Length		up to 17.6	[km/reel]
Optical Characteristics			
A44	850nm	≤2.3	[dB/km]
Attenuation	1300nm	≤0.6	[dB/km]
Overfilled Modal Bandwidth	850nm	≥500	[MHz·km]
Overmited Modal Dandwidth	1300nm	≥500	[MHz·km]
Numerical Aperture		0.200±0.015	
Croup Defractive Index	850nm	1.482	
Group Refractive Index	1300nm	1.477	
Zero Dispersion Wavelength, $\lambda_{\scriptscriptstyle 0}$		1295-1340	[nm]
Zara Disparsion Clana C	1295nm $≤$ λ ₀ $≤$ 1310nm	≤0.105	[ps/(nm²·km)]
Zero Dispersion Slope, S ₀	1310nm≤λ ₀ ≤1340nm	≤0.000375 (1590-λ₀)	[ps/(nm²·km)]
Macrobending Loss			
2 Turns @ 15 mm Padius	850nm	≤0.1	[dB]
2 Turns @ 15 mm Radius	1300nm	≤0.3	[dB]
2 Turns @ 7.5 mm Radius	850nm	≤0.2	[dB]
2 Turns @ 1.5 Hill Mudius	1300nm	≤0.5	[dB]
Backscatter Characteristics	1300	nm	
Step (Mean of Bidirectional Measurement)		≤0.10	[dB]
Irregularities Over Fibre Length and Point Discontinuity		≤0.10	[dB]
Attenuation Uniformity		≤0.08	[dB/km]
Environmental Characteristics	850nm & 3	1300nm	
Temperature Cycling	-60°C to 85°C	≤0.10	[dB/km]
Temperature-Humidity Cycling	-10°C to 85°C, 4% to 98% RH	≤0.10	[dB/km]
Water Immersion	23°C, 30 days	≤0.10	[dB/km]
Dry Heat	85°C,30 days	≤0.10	[dB/km]
Damp Heat	85°C, 85% RH, 30 days	≤0.10	[dB/km]
Mechanical Specification			
		≥9.0	[N]
Proof Test	***	≥1.0	[%]
	-	≥100	[kpsi]
Coating Strip Force	typical average force	1.5	[N]
coating strip roice	peak force	≥1.3, ≤8.9	[N]
Dynamic Stress Corrosion Susceptibility Parameter (n _a , typical)		20	

YOFC MaxBand® OM2+ Bend Insensitive Multimode Fibre complies with or exceeds ISO/IEC 11801-10M2 specification, IEC 60793-2-10 A1-OM2 specification, and TIA-492AAAF A1-OM2 specification.

YOFC MaxBand® OM3/OM4 Bend Insensitive Multimode Fibres comply with or exceed ISO/IEC 11801-1 OM3/OM4 specifications, IEC 60793-2-10 A1-OM3/A1-OM4 specifications, and TIA-492AAAF A1-OM3/A1-OM4 specifications.

Features	Benefits and Applications		
Optimized for 850nm VCSEL Compatibility with current OM2+/OM3/OM4 multimode fibre Superior geometry uniformity Low attenuation High bandwidth	 Data centers Data storage networks High-performance computing centers a Office centers Local area networks (LAN) 1 & 10 & 40 & 100 & 400 Gb/s Ethernet 		
Low differential mode delay (DMD) Very low macro-bending sensitivity	Supports the use and installation of optical cables with a small bending radius		
Coated with YOFC's proprietary dual layer UV curable acrylate	High resistance to micro-bending Optimized performance in tight-buffer cable applications Stable performance over a wide range of environmental conditions		

System Link Length

Characteristics	Conditions	Conditions Specified values		
Geometry Characteristics				
Core Diameter	-	[µm]		
Core Non-Circularity	-	[%]		
Cladding Diameter	_	≤5.0 125.0±1.0		
Cladding Non-Circularity		≤0.6	[μm] [%]	
Coating Diameter		245±7	[μm]	
Coating/Cladding Concentricity Error		≤10.0	[μm]	
Coating Non-Circularity		≤6.0	[%]	
Core/Cladding Concentricity Error		≤1.0	[µm]	
Delivery Length		up to 8.8	[km/reel]	
Optical Characteristics			į į į į į į į į į į į į į į į į į į į	
o percur characteristics	850nm	≤2.4	[dB/km]	
Attenuation	1300nm	≤0.6	[dB/km]	
		MaxBand® OM2+/OM3/OM4		
=======================================	050	1 1		
Overfilled Modal Bandwidth	850nm	≥700/≥1500/≥3500	[MHz·km]	
EG. 12. M. 112. 1.111	1300nm	≥500/≥500/≥500	[MHz·km]	
Effective Modal Bandwidth	850nm	≥950/≥2000/≥4700	[MHz·km]	
Application support distance on				
40GBASE-SR4/100GBASE-SR10 ¹	850nm	-/140/170	[m]	
10GBASE-SR	850nm	150/300/550	[m]	
1000BASE-SR	850nm	750/1000/1100	[m]	
DMD Specification	Compliant with and more stringent than	n the requirements of IEC 60793-2-10		
Numerical Aperture		0.200±0.015		
Group Refractive Index	850nm	1.482		
Group Kerractive Index	1300nm	1.477		
Zero Dispersion Wavelength, $\lambda_{\scriptscriptstyle 0}$		1295-1340	[nm]	
Zava Dianamian Clana C	1295nm $≤$ λ_0 $≤$ 1310nm	≤0.105	[ps/(nm²·km)]	
Zero Dispersion Slope, S ₀	1310nm≤λ₀≤1340nm	≤0.000375(1590-λ₀)	[ps/(nm²·km)]	
Macrobending Loss ²	-	:		
	850nm	≤0.1	[dB]	
2 Turns @ 15 mm Radius	1300nm	≤0.3	[dB]	
	850nm	≤0.2	[dB]	
2 Turns @ 7.5 mm Radius	1300nm	≤0.5	[dB]	
Backscatter Characteristics	1300)nm		
Step (Mean of Bidirectional Measurement)		≤0.10	[dB]	
Irregularities Over Fibre Length and Point Discontinuity		≤0.10	[dB]	
Attenuation Uniformity		≤0.08	[dB/km]	
Environmental Characteristics	850nm &	Pro-Chronical College	[dD/Kill]	
Temperature Cycling	-60°C to 85°C	≤0.10	[dB/km]	
, , ,				
Temperature-Humidity Cycling	-10°C to 85°C, 4% to 98% RH	≤0.10	[dB/km]	
Water Immersion	23°C, 30 days			
Dry Heat	85°C, 30 days	≤0.10		
Damp Heat	85°C, 85% RH, 30 days	≤0.10	[dB/km]	
Mechanical Specification				
Proof Test		≥9.0	[N]	
	-	≥1.0		
		≥100	[kpsi]	
Coating Strip Force	typical average force	1.5		
	peak force	≥1.3, ≤8.9	[N]	

Remarks: 1. Support distances considering maximum cable attenuation of 3.0 dB/km at 850 nm, maximum total splice/connector loss of 1.0 dB and VCSELs maximum RMS spectral width \leq 0.45 nm

^{2.} The launch condition for the macrobending loss measurement fulfils that described in IEC 61280-4-1.

MaxBand[®] WideBand OM5 Bend Insensitive Multimode Fibre

Yangtze Optical Fibre and Cable Joint Stock Limited Company

YOFC MaxBand® WideBand OM5 Bend Insensitive Multimode Fibre is a 50µm laser-optimized multimode fibre designed for short wavelength division multiplexing (SWDM) applications. Unlike legacy OM4 multimode fibre with high bandwidth at 850nm, YOFC MaxBand® OM5 Bend Insensitive Multimode Fibre has high bandwidth in the 850-950nm window and maintaining backward compatiblity with legacy OM4 fibre. WideBand OM5 and multi-wavelength transceivers are a viable solution for 100Gb/s and 400Gb/s multi-wavelength systems.

YOFC MaxBand® WideBand OM5 Bend Insensitive Multimode Fibre complies with or exceeds ISO/IEC 11801-4 OM5 specification, IEC 60793-2-10 A1-OM5 specification, and TIA-492AAAF A1-OM5 specification.

Features	Benefits and Applications
Designed for multi-wavelength systems High bandwidth in the wavelength range of 850-950nm Backward compatiblity with legacy OM4 fibre	Support single-wavelength and multi-wavelength transmission system from 40Gb/s to 400Gb/s
 Superior geometry uniformity Low attenuation High bandwidth Low differential mode delay (DMD) 	Data centers Data storage networks Local area networks (LAN) High-performance computing centers a
Very low macro-bending sensitivity	Supports the use and installation of optical cables with a small bending radius
Coated with YOFC's proprietary dual layer UV curable acrylate	High resistance to micro-bending Optimized performance in tight-buffer cable applications Stable performance over a wide range of environmental conditions

System Link Length

Characteristics	Conditions	Specified values		Units
Geometry Characteristics			'	
Core Diameter		50±2.5		[µm]
Core Non-Circularity		≤5.0		[%]
Cladding Diameter		125.0±1.0		[µm]
Cladding Non-Circularity	-	≤0.6		[%]
Coating Diameter		24	5±7	[µm]
Coating/Cladding Concentricity Error	-	€	10.0	[µm]
Coating Non-Circularity	-	<	6.0	[%]
Core/Cladding Concentricity Error		<	1.0	[µm]
Delivery Length		up1	to 8.8	[km/reel]
Optical Characteristics			'	
	850nm	<	2.4	[dB/km]
Attenuation	953nm	<	1.7	[dB/km]
	1300nm	<	0.6	[dB/km]
	850nm	≥3	3500	[MHz·km]
Overfilled Modal Bandwidth	953nm		1850	[MHz·km]
	1300nm		500	[MHz·km]
	850nm		1700	[MHz·km]
Effective Modal Bandwidth	953nm	≥4700 ≥2470		[MHz·km]
Application support distance on				
100Gb/s WDM ¹		150		[m]
40Gb/sWDM¹		100	40	[m]
40GBASE-SR4 / 100GBASE-SR10 ²	850nm	200		[m]
		0.200±0.015		
Numerical Aperture	850nm		482	
Group Refractive Index	1300nm	1.477		
Zero Dispersion Wavelength, λ_n		1297-1328		[nm]
Zero Dispersion Slope, S ₀	-	≤4(-103) / (840 (λ₀/840)⁴)		[ps/(nm²·km)]
Macrobending Loss ³		@850nm	@1300nm	
2 Turns @ 15 mm Radius		<0.1	©13001111 ≤0.3	[dB]
2 Turns @ 7.5 mm Radius				[dB]
Backscatter Characteristics		≤0.2	≤0.5	[аБ]
	850nm &		0.10	[JD]
Step (Mean of Bidirectional Measurement)	-	≤0.10		[dB]
Irregularities Over Fibre Length and Point Discontinuity	-		0.10	[dB]
Attenuation Uniformity			0.08	[dB/km]
Environmental Characteristics	850nm &			
Temperature Cycling	at -60°C to 85°C	≤0.10		[dB/km]
Temperature-Humidity Cycling	at -10°C to 85°C and 4% to 98% RH	≪0.10		[dB/km]
Water Immersion	at 23°C for 30 days	≪0.10		[dB/km]
Dry Heat	at 85°C for 30 days	≪0.10		[dB/km]
Damp Heat	at 85°C and 85% RH for 30 days	≤0.10		[dB/km]
Mechanical Specification				
		≥9.0		[N]
Proof Test	-	≥1.0		[%]
	-	≥	100	[kpsi]
Coating Strip Force	typical average force	1.5		[N]
county only to the	peak force	≥1.3, ≤8.9		[N]
ynamic Stress Corrosion Susceptibility Parameter (n _d , typical)			20	

Remarks: 1. Support distance with SWDM transceivers http://www.swdm.org/msa/

- 2. Support distances considering maximum cable attenuation of 3.0 dB/km at 850 nm, maximum total splice/connector loss of 1.0 dB and VCSELs maximum RMS spectral width \leq 0.45 nm
- 3. The launch condition for the macrobending loss measurement fulfils that described in IEC 61280-4-1.